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Traffic jams, granular flow, and soliton selection

Douglas A. Kurtze
Department of Physics, North Dakota State University, Fargo, North Dakota 58105-5566

Daniel C. Hong
Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015
(Received 17 October 1994)

The flow of traffic on a long section of road without entrances or exits can be modeled by continuum
equations similar to those describing fluid flow. In a certain range of traffic density, steady flow becomes
unstable against the growth of a cluster, or “phantom” traffic jam, which moves at a slower speed than
the otherwise homogeneous flow. We show that near the onset of this instability, traffic flow is described
by a perturbed Korteweg—de Vries (KdV) equation. The traffic jam can be identified with a soliton solu-
tion of the KdV equation. The perturbation terms select a unique member of the continuous family of
KdV solitons. These results may also apply to the dynamics of granular relaxation.

PACS number(s): 05.40.+j, 47.54.+r, 81.35.+k, 89.40.+k

I. INTRODUCTION

The flow of traffic along a limited-access highway is
similar in many respects to the flow of a classical fluid
[1-3]. For instance, in the absence of entrances and exits,
the total number of vehicles on the road is conserved.
This leads to a continuity equation which relates the local
density p(x,t) of traffic to the local average speed v (x,1),

o o0, (1)

The average traffic speed v obeys an evolution equation
similar to the Navier-Stokes equation, but with some dis-
tinctive characteristics. The standard model [1-3] as-
sumes an equation of the form

O , dv _ 1 p1—e29Lp) | p 3%
8t+v8x [Vip)—v]—cj ax -f-paxz. 2)

The right side of this equation embraces three factors
affecting traffic speed. The final term models “viscosity”
or “diffusion,” a presumed tendency to adjust one’s speed
to that of the surrounding traffic. The second term is an
anticipation factor: drivers slow down at the sight of an
increase in traffic density ahead. The (dimensionless)
function L(p) should then be monotonically increasing.
It is usually [1-3] taken to be Inp, in which case c3p
plays the role of a pressure; however, we will not commit
ourselves to this choice. The first term expresses the ten-
dency of traffic at a given density p to relax to some natu-
ral average speed V(p). At low densities this speed is
determined by such things as road conditions and speed
limits, and is only weakly dependent on p. At high densi-
ties, V(p) approaches zero, and so is again weakly depen-
dent on p. At intermediate densities it drops off rapidly,
largely due to the fact that higher traffic density makes it
more difficult for faster drivers to overtake slower
drivers. Thus we expect V(p) to be a decreasing func-
tion, with a small derivative at low and high values of p.
Two recent observations [3,4] have brought to our at-
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tention the need for a rigorous nonlinear analysis of the
traffic equations. The first is that of a clustering of cars,
seen in numerical simulations [3]. Homogeneous traffic
flow can be unstable, with localized regions of high densi-
ty and low average velocity spontaneously appearing.
These pulses preserve their shape and move with constant
speed; they correspond to the ‘“‘phantom” traffic jams
which appear on highways for no apparent reason. The
other observation has to do with the flow of granular
media. It has recently been recognized [4] that traffic
equations might be utilized to study the dynamic relaxa-
tion of granular particles in a one-dimensional tube under
repeated tapping. Underlying this approach is the as-
sumption that voids in the tube migrate upon tapping to-
ward the top of the tube and accumulate there, resulting
in a reduction of the height. In this picture, voids behave
like cars on a highway, so the governing equations for
voids are precisely the traffic equations. The rate of
height reduction is then proportional to the flux of voids
past a fixed point in space. Numerically, it was found
that beyond the onset of instability the arrival of voids at
the top is not continuous. Rather, localized clusters of
voids arrive periodically, causing the height to decrease
discontinuously. Such discrete reduction has been
termed stick-slip relaxation [4].

We note that traffic equations essentially describe the
flow of conserved but fluctuating physical quantities,
such as cars on a highway or voids in a granular medium.
They might equally well describe the migration of people,
animals, or electronic messages. Hence the appearance
of localized pulses in an initially homogeneous flow is an
interesting discovery which requires further investiga-
tion.

The model of traffic flow embodied in Egs. (1) and (2)
admits a simple steady-state solution representing uni-
form, homogeneous flow, namely

plx,t)=p,, vix,t)=V(p,)=v, . (3)

If, as we suppose, V(p) is monotonically decreasing, then

218 ©1995 The American Physical Society



52 TRAFFIC JAMS, GRANULAR FLOW, AND SOLITON SELECTION 219

there is a unique homogeneous steady state for each pos-
sible value of p,. At intermediate densities, however, this
state is unstable [2,3]. A fluctuation in the local density
of traffic produces a local concentration of vehicles which
are moving more slowly than v, because of the higher lo-
cal density. Their presence slows the faster-moving vehi-
cles behind which catch up to them, further increasing
the density of the slow-moving cluster. But the local
“pressure,” c3p, also increases, tending to push vehicles
away from one another. (This is reminiscent of the clus-
tering instability in granular systems presented in [5].)
Eventually the competition between these two effects may
create a self-sustaining cluster which moves backwards
relative to the overall traffic flow as vehicles behind it
must slow down to avoid a collision, while vehicles on its
leading edge are able to speed up due to the lower traffic
density ahead of them.

To quantify this picture, we assume that traffic is ini-
tially in a state which differs infinitesimally from the
homogeneous flow of Eq. (3). We decompose this flow

| BL"(p)

Il

FIG. 1. The two terms p|V’(p)|? (solid curve) and c3L"(p)
(dotted curve) in the stability criterion (7). The intersections of
these two curves locate the critical densities p.; and p.,. The
dashed curve is the velocity c(p) from Eq. (9). Note that ¢’ is
negative at p.; and positive at p.,. All curves are calculated for
the functions V’(p)=—21.025sech’[(p—0.25)/0.12] and
L(p)=Inp and the value ¢, =2.484 45 used in Ref. [3].

into a linear combination of Fourier modes, each of
which grows or decays with its own growth rate. Thus
we write

p(x,t)=p, + > prexplikx +o,t),
k

C))
v(x,t)=v, + XD explikx +o,t) ,
k

substitute these expressions into (1) and (2), and linearize
in py and D,. We find that each linear growth rate o,
must satisfy the quadratic equation

0=(0, +iv,k )+ (o +iv,k)

—1-+ka
-

V'(py)
+e2p,L'(p, )k2+iwk . 5)

Here primes represent derivatives with respect to p. It is
not difficult to show (using, e.g., the Nyquist criterion)
that both roots of this quadratic have negative real parts
provided

Pl V' (e 12 <c3L(py )1 +urk?)? (6)

while otherwise one root has a positive real part. The
flow is stable against all infinitesimal perturbations for

prlV'(pp) 2 <ciLl'(py) )

Figure 1 shows the two sides of this inequality for the pa-
rameter values used by Kerner and Konhauser [3]. There
is an intermediate range of density, p.; <p <p,,, in which
V(p) is so sensitive to changes in p that homogeneous
flow is unstable. From (6) we see that the instability first
appears at small wave numbers k near either p,.

Writing the solution of (5) as a power series in k, we
find

Re(o)=p,lpy |V (py) 1> —ciL'(py) 1k2—O(k*) ’®)
Im(o, )=~ —[v, +p,V'(p,)k+0(k?)

for small k. From this we see that the real part of the
growth rate is negative for small k provided (7) is
satisfied, while it turns positive when (7) is violated.
From the imaginary part of o, we see that the critical
disturbance travels with a speed

clpp)=Vip,)+p, Vipy) , 9
which is slower than the steady-state traffic speed
v, = V(py), since V' is negative.

II. LONG-WAVELENGTH ANALYSIS

Suppose the density of traffic is in a range for which
the stability criterion (7) is violated, but only slightly. We
quantify this by writing
(pe+8p)1V'(p. +8p)|>—cFL"(p. +8p)

=[V'(p)*+2p V' (p V" (p.)—cFL"(p,)18p
Eagz N (10)
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where € is an arbitrary small parameter. A positive value
of a means that steady flow is unstable; from Fig. 1 we
see that this occurs for positive §p near p,; and for nega-
tive §p near p,,. From the linear stability result (6) we
see that perturbations with wave numbers of order € will
grow. The leading order time dependence of these per-
turbations then comes from the term in o, which is
linear in k, which implies that the growing perturbations
are traveling waves with speed c. The next leading time
dependence comes from the k3 term, so it occurs on time
scales of order € 3. Finally, we expect that an amplitude
equatlon would balance the linear growth term of order
€*4 with a stabilizing nonlinear term of order A3; thus
we expect the disturbance to saturate at a size of order €.

P _ ,_13_ o V158 = —erpy O
aT ,quhIVl 3 T2V +p, V"' ]p Pox €Tp,, ox?

where X =ex, T=¢€%t, and all derivatives are evaluated
at p,. The leading order in this equation is the
Korteweg—de Vries equation, which is a classic integra-
ble nonlinear evolution equation which is known to lead
to solitons [6].

The initial value problem for the Korteweg—de Vries
(KdV) equation can be solved by the inverse scattering
transform [6], with the result that localized initial condi-
tions tend to resolve into a train of solitons. Moreover,
perturbation theories based on inverse scattering ideas
are also available [7]. For our purpose, however, a less
sophisticated method suffices. We concentrate on the
simple one-soliton solution, which corresponds to a sin-
gle, isolated traffic jam. The one-soliton solution of the
leading order of (13) is

=S(X,T;k)= A sech®k(X +uT) , (14)

where k is a free parameter and

= "2 R2ur|V'|
u=4ut|V'\k? A= T +p, V"k (15)
Note that the denominator in the expression for A is the
p derivative of the velocity c(p) of the perturbation given
by (9). If this is negative, then the soliton represents a lo-
cal increase in traffic density, with a concomitant de-
crease in speed —a traffic jam. On the other hand, if it is
positive then it represents a local rarefaction of traffic
density and an increase of speed. The function c(p) is
plotted in Fig. 1; for the parameter values used there,
traffic jams appear near p.; and rarefactions near p,,.

To account for the effect of the order-e correction on
the right hand side of (13), we must allow for the possibil-
ity that it could cause a slow change in the parameter k
of the unperturbed soliton. Thus we write

p=S(X,T;k(T,))+eps , (16)

28
2ur] V’IZ%(BZ— Fap+ LV 2=2p, |V |V —cBL" )P

We implement these scalings by writing

p(x,t)=p, +€*plex,et) ,

(11)
v(x,t)=uv, +eX(ex,et) .

Inserting this ansatz into the governing equations (1) and
(2), transforming into a frame of reference moving with
the speed c¢(p, ), and expanding systematically in powers
of €, we find that the velocity and density perturbations
are related by

—|v'|p+0(e) , (12)

and that the density perturbation satisfies the dynamical
equation

(13)

where T, =e€T is a slow time variable. Substituting this
into (13) then leads to
oS dk

ok ar, ©

9

3T —ur|V’|

’ " a P
8X3 +Q2V' +p,V )—fS b3

=R, A7)

where 7 stands for the order-e€ term on the right hand
side of (13) with p replaced by S. Multiplying (17) by S,
integrating over all X, and averaging over T annihilates
the term involving g5 [8], and so leaves us with an evolu-
tion equation for k:

dk _ 8pn
ar, 15 ¥
alV'[2+7p, | V'V +6cFL"
kS
loslu'szhl | 2|Vl|_phVu

(18)

From this we see that when the coefficient of k° is nega-
tive and « is negative, k decreases to zero (so that the sol-
iton amplitude vanishes), while for positive a, k tends to

the nontrivial zero of the right side of (18). We then find
that the velocity of the selected soliton is
21V | —p, V"
7 Ph ’ (19)

- a
2 4|V 2+ T7p,| V| V"' +6c3L"
and the amplitude of the density perturbation is

21 a
2 4V |12 +7p, VIV +6c2L"

(20)

The amplitude of the perturbation of the vehicle velocity,
according to (12), is this multiplied by —|V’|. It is
noteworthy that these results are independent of the
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diffusion coefficient u, although the width k of the select-
ed 1%‘)liton does depend on it (being proportional to
[T}

It is also possible for the coefficient of k° in (18) to be
positive. In this case there is a subcritical instability.
The zero of (18) is then a threshold: k decreases to zero if
it initially is less than this (for a <0), otherwise it grows.
The final form of the traffic jam would be something
larger than assumed in the scalings (11) used to derive
(15). This is the case for the parameters used by Kerner
and Konhauser; in their work, subcritical instabilities
were observed at both p.; and p,,, leading to traffic jams
in the former case and rarefactions in the latter.

We emphasize the role played by the correction term
on the right hand side of (13). This destroys the exact in-
tegrability of the evolution equation for the traffic densi-
ty. Without this correction, a continuous range of soliton
solutions would exist, and solitons which collided would
pass through each other and maintain their separate iden-
tities. With it, a unique soliton solution is selected, and
multiple solitons could merge. This last point is a subject
of ongoing research. We have also found that applying a
similar perturbation analysis to the periodic, cnoidal
solutions of the KdV equation leads to selection of the
amplitude of the solution, but not of the wavelength; thus
periodic arrays of traffic jams could arise from (13) with

any period.

We now briefly discuss the physical relevance of the ex-
istence of this soliton mode in the context of granular dy-
namics. In an effectively one-dimensional granular as-
sembly, the propagation of disturbance in the form of sol-
itons might be associated with the sudden appearance of
local ordering, perhaps hexagonal, which generates a
massive void. Such massive voids then move collectively
until they disappear at the top layer to the air. The ap-
pearance of density waves [9,10] and clogging [11] in a
pipe flow of granular materials might be a strong indica-
tion of such soliton modes in granular dynamics. Such
soliton modes perhaps might be of relevance in under-
standing unusual sound propagation through granular
media [12]. ,

Note added in proof. After submitting this paper we
were informed that Hayakawa et al. have obtained a
similar result [13] in the context of a two-fluid model of
vibrating beds.

ACKNOWLEDGMENTS

This work was supported by the National Science
Foundation EPSCoR program administered by ASEND
in North Dakota. We thank Professor David Kaup for
helpful conversations.

[1] W. Leutzbach, Introduction to the Theory of Traffic Flow
(Springer, Berlin, 1988), and references therein.

[2] R. Kiihne, in Highway Capacity and Level of Service, edit-
ed by U. Brannolte (Balkema, Rotterdam, 1991), p. 211.

[3]1 B. S. Kerner and P. Konhéuser, Phys. Rev. E 48, R2335
(1993); 50, 54 (1994).

[4] D. C. Hong, S. Yue, J. K. Rudra, M. Y. Choi, and Y.
Kim, Phys. Rev. E 50, 4123 (1994).

[5]S. Savage, J. Fluid Mech. 241, 109 (1992); see also I.
Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70, 1619
(1993).

[6] See, e.g., P. Drazin, Solitons (Cambridge University Press,

New York, 1985).

[7] See, e.g., Y. Kivshar and B. A. Malomed, Rev. Mod. Phys.
61, 763 (1989), and references therein.

[8] E. Ott and R. N. Sudan, Phys. Fluids 12, 2388 (1969).

[9] J. Lee and M. Leibig, J. Phys. I France 4, 507 (1994).

[10] E. E. Ehrichs, H. M. Jaeger, G. S. Karczmar, J. B.
Knight, V. Yu. Kuperman, and S. R. Nagle, Science 267,
1632 (1995).

[11] T. Poschel, J. Phys. I France 4, 499 (1994).

[12] C. Liu and S. Nagle, Phys. Rev. Lett. 68, 2301 (1992).

[13] H. Hayakawa, T. S. Komatsu, and T. Tsuzki, Physica A
204, 277 (1994).



